ТЕОРИЯ И ПРАКТИКА ПРОЕКТИРОВАНИЯ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ ДЛЯ СИСТЕМЫ COMMON-RAIL

Грехов Л.В., Борисенко Н.Е., Потапов А.И., Малкин А.В., Рогов В.С., Фонов В.В. (МГТУ им. Н.Э.Баумана) Миронычев М.А., Павельев В.Н., Ильичев А.Г. (ОАО "ЗМЗ")

Статья из сборника:

Грехов Л.В., Борисенко Н.Е., Потапов А.И., Малкин А.В., Рогов В.С., Фонов В.В., Миронычев М.А., Павельев В.Н., Ильичев А.Г. Теория и практика проектирования топливного насоса высокого давления для системы Common-Rail // Сб. науч. тр. по матер. Межд. конф. Двигатель-2007, посв. 100-летию школы двигател. МГТУ им. Н.Э. Баумана – М.: МГТУ им. Н.Э. Баумана, 2007. – С. 284-289.

Топливный насос высокого давления (ТНВД) относится к наиболее трудоемким в создании, дорогим в производстве компонентам аккумуляторных систем с электронным управлением — Common Rail (CR). Стоит задача создания простого, дешевого, надежного ТНВД, способного создавать давления до 200 МПа, а в ближайшем будущем — и выше.

В системах до середины 90-х годов применялись традиционные ТНВД или созданные на их базе, в том числе с несколькими участками подъема кулачка. Однако, это не лучшее решение, т.к. традиционные ТНВД применительно к СR обладают рядом недостатков: кулачковым приводом, архаичным способом регулирования производительности, неприменимы нагнетательные клапаны с разгружающим пояском, сам ТНВД получается громоздким, тяжелым, излишне сложным, дорогим и ненадежным. Тем не менее стереотипы старого живучи, а технологическая неготовность вынуждает отечественные и зарубежные фирмы отчасти идти по этому пути (рис. 1,а,б). Другая преемственность – применение роторных насосов на базе распределительных (рис. 1,д).

В промышленной гидравлике и гидроавтоматике применяются аксиальные насосы высокого давления (рис. 1,г). Они рассчитаны на максимальные давления 28...40 МПа в среде специальных масел, т.е. напрямую непригодны для CR.

В немецких системах CR Bosch, Siemens, L'Orange получили распространение ТНВД, компонуемые по звездообразной схеме (рис. 1,в), называемой в гидравлике радиально-плунжерной. Они отличаются равномерной нагрузкой на приводном валу, малыми габаритами и стоимостью.

При создании ТНВД МГТУ было принято во внимание, что рядный

ТНВД имеет более удобную для компоновки форму, более короткие соединительные каналы, меньшее число герметизируемых стыков в линии высокого давления, большие возможности использования традиционного оборудования при внедрении в производство. В целях повышения несущей способности привода плунжера кулачковый механизм с роликовым толкателем был заменен эксцентриковым с промежуточной втулкой, аналогичной рис. 1,в.

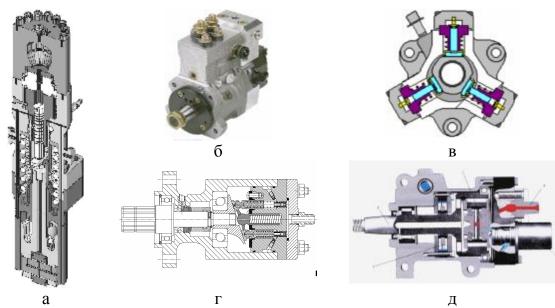


Рис. 1. ТНВД для CR: а–индивидуальный Sulzer; б–рядный R.Bosch; в-радиально-плунжерный R.Bosch; г–аксиальный AVL; д–роторный Delphi

При регулировании производительности активным ходом плунжера, плунжер следует снабжать лишь одной верхней управляющей кромкой. В ранних моделях насосов Bosch регулирование производительности осуществлялось блокированием впускного клапана. Выбор остановился на способе, обеспечивающем простоту и высокий КПД - дросселированием на всасывании.

В ТНВД СR применяются различные виды нагнетательных клапанов. В любом случае должен отсутствовать разгружающий поясок. Минимальная масса и быстродействие присущи плоским и шариковым клапанам, однако, для их производства требуется отлаженная технология. В ТНВД применены малогабаритные грибковые клапаны. Вопрос о наличии впускных клапанов был решен отрицательно по соображениям принятого способа регулирования и обеспечения большей надежности: для наполнения плунжерных полостей используются окна втулок, а ход плунжера имеет запас.

Укрупнено к существенным требованиям к ТНВД можно отнести возможность поддержания заданных на каждом режиме давления и произ-

водительности, в том числе на максимальных и пусковых частотах, максимальных температурах топлива, а также обеспечение динамического резерва в переходных режимах, заданного ресурса, быстрого регулирования. Как показала практика, выдерживание этих требований требует тщательной отработки конструкции, совершенной технологии. При этом ТНВД должен быть дешевым и поэтому - конкурентоспособным.

Можно выделить крупные задачи, которые приходится решать при создании ТНВД СR. К их числу следует отнести:

- обеспечение наполнения плунжерной полости на высоких частотах;
- обеспечение неразрывности кинематических связей на высоких частотах;
- обеспечение производительности и давления на всех расчетных режимах;
- обеспечение работоспособности подшипника втулки эксцентрика;
- обеспечение ресурса нагнетательного клапана;
- обеспечение температурных условий работы ТНВД;

Расчет необходимых давлений подачи для поля рабочих режимов [1] определялось методом оптимизации рабочего процесса дизеля по параметрам заданного экологического класса автомобиля согласно регламенту РФ. Расчет необходимой на каждом режиме работы производительности с учетом заданной внешней скоростной характеристики ведется с учетом расхода на управление, динамического резерва и др. [2]. Выбирая число и диаметр плунжеров принимался во внимание качественный анализ факторов (табл. 1).

Таблица 1. Анализ целесообразного числа секций ТНВД

таолица 1. Анализ целесообразного числа секции 11112Д						
Число	Достоинства	Недостатки				
секций						
1	• надежность клапана	• высокая неравномерность по-				
	• удобство отвода топлива	дачи и момента				
	• простота эксцентрикового	• высокие нагрузки в приводе				
	привода, жесткий вал	плунжера				
	• больший коэффициент подачи					
2	• надежность клапанов	• неравномерность подачи и мо-				
	• простота эксцентрикового	мента				
	привода					
34	• равномерность подачи	• сложность установки эксцен-				
	• снижение нагрузок в приводе	триковых втулок средних секций				
	плунжеров	• падает надежность клапанов				
		• уменьшается жесткость вала				
		• меньше коэффициент подачи				

Наиболее нагруженный подшипник – втулки эксцентрика – может быть скольжения или игольчатый. В различных вариантах ТНВД МГТУ

использовались оба типа. Использование игольчатых подшипников в механизме привода плунжера ТНВД CR имеет ряд достоинств:

- возможность работы при высоких частотах вращения (до 8000 мин⁻¹);
- высокая радиальная грузоподъемность при малых размерах и без применения дорогих материалов;
- пониженный расход смазочных материалов, простота смазывания;
- возможность работы при высоких нагрузках на малых частотах;
- малая чувствительность к вязкости смазывающего масла;
- простота изготовления и относительная дешевизна

Расчет наполнения плунжерной полости, неразрывности кинематических связей, обеспеченности производительности и давления на расчетных режимах велось с применением программного комплекса Впрыск разработки МГТУ им. Н.Э.Баумана. Расчет подшипников и клапанов — по известным инженерным методикам. Деформационная задача важнейших

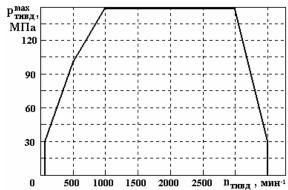


Рис. 2. Поле допустимых режимов работы ТНВД DCP Siemens

элементов ТНВД (корпус, эксвтулка, центриковая втулка плунжера, вал) решалась с использованием ПК ANSYS. Многообразие ограничений обусловливает поле рабочих режимов ТНВД. В качестве примера на рис. 2 приведены ограничительные кривые ТНВД DCP фирмы Siemens. Проведенные нами расчеты для **ТНВД** для дизеля **3M3-5148.10**

позволили сформировать поле его рабочих режимов (рис. 3). Оно показательно в отношении условий проектирования подобных ТНВД.

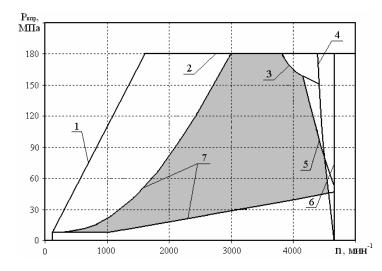


Рис. 3. Поле рабочих режимов ТНВД СR и его границы: 1-работоспособность подшипника скольжения; 2- раскрытие стыков; 3- тепловыделение в подшипнике; 4- работоспособность клапанов; 5- наполнение; 6- разрыв кинематических связей; 7- оптимальные для рабочего процесса Р_{впр}

МГТУ на протяжение ряда лет ведет разработку ТНВД для систем CR. На рис. 4 представлен ТНВД 4-го поколения, а на рис. 5 его гидравлические характеристики. Насос снабжался встроенным подкачивающим героторным насосом, клапанами, регулирующими давление и подачу, смазывался топливом. Гидравлические характеристики демонстрируют, что показатели качества ТНВД, как поршневого насоса, достаточно высоки и не уступают или превышают показателям испытанных нами ТНВД фирм R.Bosch и Siemens. Все экспериментальные данные приведены к условиям 40° С. Рабочими давлениями этого ТНВД являются до 30...160 МПа. Созданный на той же платформе опытный насос продолжительно работал при давлениях подачи 200 МПа. Характеристика ТНВД приведена в табл. 2.

поколения.

Рис. 4. ТНВД CR четвертого Рис. 5. Гидравлическая характеристика ТНВД при различных частотах вращения. Объемная подача – за 400 циклов.

Таблица 2. Краткая техническая характеристика ТНВД CR МГТУ

Диапазон ра	30200				
Диапазон ра	503000				
Встроенный	имеется				
Клапан элен	имеется				
Клапан электроуправления производительностью име					
Импортозам	обеспечено				
Параметры одного из вариантов ТНВД с двумя рабочими секциями:					
Цикловая п	720				
Объемный ј	2,2 (130)				
Масса, кг:	корпус из алюминиевых сплавов	5,5			
	чугунный литой корпус	8,5			
	стальной фрезерованный корпус	11,5			

Моторные испытания подтвердили возможность работы дизеля ЗМЗ-5148.10 без изменения мощности, экономичности и величины вредных выбросов с ОГ при замене штатного ТНВД на опытный конструкции

МГТУ (табл. 3). В данном случае лучший достигнутый результат рассматривался лишь полное сохранение параметров снабжения топливом высокого давления аккумулятора: как по абсолютному значению за счет ресурсов ТНВД и быстрой отработки команд управления подачей того же блока управления, так и за счет непревышения колебаний давления в аккумуляторе (рис.6).

Таблица 3. Сравнение экологических показателей дизеля 3М3-5148.10 при работе с различными ТНВД.

Топливный	Концентрации на номинальном режиме, ppm			Дым-
насос высоко-	суммарных уг-	оксида угле-	оксидов азота	ность,
го давления	леводородов	рода		%
Siemens	50	243	1003	1517
МГТУ	51	249	998	1617

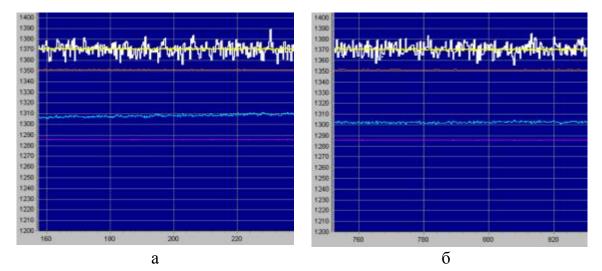


Рис. 6. Установочное (почти постоянное) и реальное (с колебаниями) значение $P_{\text{акк}}$ на режиме BCX при n=2500 мин⁻¹ при испытании дизеля с ТНВД Siemens (а) и с опытным ТНВД (б).

Таким образом, проектирование ТНВД для Common Rail должно изначально ориентироваться не на конвертацию из старых, а на создание специального простого, малогабаритного, дешевого насоса. При этом должны быть решены характерные технические трудности, включая обеспечение работоспособности привода плунжеров, клапанов, органов управления и др. Созданный на основе разработанных принципов проектирования и методов расчета ТНВД обеспечил на дизеле полную взаимозаменяемость со штатным.

Литература:

- 1. Грехов Л.В., Кулешов А.С. Расчетное формирование оптимальных законов управления для программ электронных систем управления дизелями// Сб. науч. тр. по проблемам двигателестроения, посв. 175-летию МГТУ им. Н.Э.Баумана.— М.: МГТУ им. Н.Э.Баумана, 2005.— С.138-143.
- 2. Грехов Л.В, Иващенко Н.А., Марков В.А. Топливная аппаратура и системы управления дизелем: Учебник для вузов.- Москва: Изд-во Легион-Автодата, 2004., ил 344 с.